	_
Magnetic Fields	
Wagnotto Florad	
Magnetic Field	
-	
Magnets and electric currents create magnetic fields around themselves	
When another magnet or moving charge enters this magnetic field it will experience	
a magnetic forceThe magnetic field is a vector quantity	
Manakia Field Lines	
Magnetic Field Lines	
 Imaginary lines around magnets and currents 	
 Tangents to the field lines give the direction 	
Field lines go from "North" to "South"	

Units

- The unit of the magnetic field is the tesla (T)
- The magnetic field of the earth is about 10-4 T

Earth

 The magnetic field of the earth resembles that of a bar magnet

The magnetic poles are not in the same location as the geographic poles	
Magnetic declination is the angle	
 between true north and magnetic north The angle depends on where you are: 	
- Victoria, BC (15.66° East) - St. John's, NF (17.59° West)	
- Winnipeg, MB (2.72° East)	
This angle changes due to changes in Earth's magnetic field	
 Current change in Winnipeg is 0.085°/y West 	
Magnetic inclination or magnetic dip is	
the angle between the horizontal plane	
and the magnetic field vector.	
θ	
\vec{B}	
This value depends on your location since	
the Earth and the magnetic field is curved.	
At the equator, 0°At the poles, 90°	
– Winnipeg, 74.5°	
Monopoles	
Monopoles	
A monopole is an isolated north or south	
pole Predicted by modern theories of particle	
 Predicted by modern theories of particle physics but have never been found 	

Domain Theory

- The domain theory of magnetism explains what happens inside materials when magnetized.
- All large magnets are made up of smaller magnetic regions, or domains.
- The magnetic character of domains comes from the presence of even smaller units, called dipoles.

- In most materials the dipoles are arranged randomly canceling each other out resulting in no magnetic field.
- If the dipoles all align with the poles in the same direction, then an overall magnetic field is produced.

Random (no magnetic effects)

Alianed

Image: David Libby (Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Auroras

 Caused by high-energy particles from the solar wind trapped in the Earth's magnetic field

Australia